3.1900 \(\int \frac{(1-2 x)^{3/2} (2+3 x)}{3+5 x} \, dx\)

Optimal. Leaf size=69 \[ -\frac{3}{25} (1-2 x)^{5/2}+\frac{2}{75} (1-2 x)^{3/2}+\frac{22}{125} \sqrt{1-2 x}-\frac{22}{125} \sqrt{\frac{11}{5}} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right ) \]

[Out]

(22*Sqrt[1 - 2*x])/125 + (2*(1 - 2*x)^(3/2))/75 - (3*(1 - 2*x)^(5/2))/25 - (22*Sqrt[11/5]*ArcTanh[Sqrt[5/11]*S
qrt[1 - 2*x]])/125

________________________________________________________________________________________

Rubi [A]  time = 0.0175782, antiderivative size = 69, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {80, 50, 63, 206} \[ -\frac{3}{25} (1-2 x)^{5/2}+\frac{2}{75} (1-2 x)^{3/2}+\frac{22}{125} \sqrt{1-2 x}-\frac{22}{125} \sqrt{\frac{11}{5}} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right ) \]

Antiderivative was successfully verified.

[In]

Int[((1 - 2*x)^(3/2)*(2 + 3*x))/(3 + 5*x),x]

[Out]

(22*Sqrt[1 - 2*x])/125 + (2*(1 - 2*x)^(3/2))/75 - (3*(1 - 2*x)^(5/2))/25 - (22*Sqrt[11/5]*ArcTanh[Sqrt[5/11]*S
qrt[1 - 2*x]])/125

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(1-2 x)^{3/2} (2+3 x)}{3+5 x} \, dx &=-\frac{3}{25} (1-2 x)^{5/2}+\frac{1}{5} \int \frac{(1-2 x)^{3/2}}{3+5 x} \, dx\\ &=\frac{2}{75} (1-2 x)^{3/2}-\frac{3}{25} (1-2 x)^{5/2}+\frac{11}{25} \int \frac{\sqrt{1-2 x}}{3+5 x} \, dx\\ &=\frac{22}{125} \sqrt{1-2 x}+\frac{2}{75} (1-2 x)^{3/2}-\frac{3}{25} (1-2 x)^{5/2}+\frac{121}{125} \int \frac{1}{\sqrt{1-2 x} (3+5 x)} \, dx\\ &=\frac{22}{125} \sqrt{1-2 x}+\frac{2}{75} (1-2 x)^{3/2}-\frac{3}{25} (1-2 x)^{5/2}-\frac{121}{125} \operatorname{Subst}\left (\int \frac{1}{\frac{11}{2}-\frac{5 x^2}{2}} \, dx,x,\sqrt{1-2 x}\right )\\ &=\frac{22}{125} \sqrt{1-2 x}+\frac{2}{75} (1-2 x)^{3/2}-\frac{3}{25} (1-2 x)^{5/2}-\frac{22}{125} \sqrt{\frac{11}{5}} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )\\ \end{align*}

Mathematica [A]  time = 0.0185851, size = 51, normalized size = 0.74 \[ \frac{5 \sqrt{1-2 x} \left (-180 x^2+160 x+31\right )-66 \sqrt{55} \tanh ^{-1}\left (\sqrt{\frac{5}{11}} \sqrt{1-2 x}\right )}{1875} \]

Antiderivative was successfully verified.

[In]

Integrate[((1 - 2*x)^(3/2)*(2 + 3*x))/(3 + 5*x),x]

[Out]

(5*Sqrt[1 - 2*x]*(31 + 160*x - 180*x^2) - 66*Sqrt[55]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/1875

________________________________________________________________________________________

Maple [A]  time = 0.005, size = 47, normalized size = 0.7 \begin{align*}{\frac{2}{75} \left ( 1-2\,x \right ) ^{{\frac{3}{2}}}}-{\frac{3}{25} \left ( 1-2\,x \right ) ^{{\frac{5}{2}}}}-{\frac{22\,\sqrt{55}}{625}{\it Artanh} \left ({\frac{\sqrt{55}}{11}\sqrt{1-2\,x}} \right ) }+{\frac{22}{125}\sqrt{1-2\,x}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(3/2)*(2+3*x)/(3+5*x),x)

[Out]

2/75*(1-2*x)^(3/2)-3/25*(1-2*x)^(5/2)-22/625*arctanh(1/11*55^(1/2)*(1-2*x)^(1/2))*55^(1/2)+22/125*(1-2*x)^(1/2
)

________________________________________________________________________________________

Maxima [A]  time = 3.8643, size = 86, normalized size = 1.25 \begin{align*} -\frac{3}{25} \,{\left (-2 \, x + 1\right )}^{\frac{5}{2}} + \frac{2}{75} \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} + \frac{11}{625} \, \sqrt{55} \log \left (-\frac{\sqrt{55} - 5 \, \sqrt{-2 \, x + 1}}{\sqrt{55} + 5 \, \sqrt{-2 \, x + 1}}\right ) + \frac{22}{125} \, \sqrt{-2 \, x + 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)*(2+3*x)/(3+5*x),x, algorithm="maxima")

[Out]

-3/25*(-2*x + 1)^(5/2) + 2/75*(-2*x + 1)^(3/2) + 11/625*sqrt(55)*log(-(sqrt(55) - 5*sqrt(-2*x + 1))/(sqrt(55)
+ 5*sqrt(-2*x + 1))) + 22/125*sqrt(-2*x + 1)

________________________________________________________________________________________

Fricas [A]  time = 1.36693, size = 176, normalized size = 2.55 \begin{align*} \frac{11}{625} \, \sqrt{11} \sqrt{5} \log \left (\frac{\sqrt{11} \sqrt{5} \sqrt{-2 \, x + 1} + 5 \, x - 8}{5 \, x + 3}\right ) - \frac{1}{375} \,{\left (180 \, x^{2} - 160 \, x - 31\right )} \sqrt{-2 \, x + 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)*(2+3*x)/(3+5*x),x, algorithm="fricas")

[Out]

11/625*sqrt(11)*sqrt(5)*log((sqrt(11)*sqrt(5)*sqrt(-2*x + 1) + 5*x - 8)/(5*x + 3)) - 1/375*(180*x^2 - 160*x -
31)*sqrt(-2*x + 1)

________________________________________________________________________________________

Sympy [A]  time = 15.4728, size = 102, normalized size = 1.48 \begin{align*} - \frac{3 \left (1 - 2 x\right )^{\frac{5}{2}}}{25} + \frac{2 \left (1 - 2 x\right )^{\frac{3}{2}}}{75} + \frac{22 \sqrt{1 - 2 x}}{125} + \frac{242 \left (\begin{cases} - \frac{\sqrt{55} \operatorname{acoth}{\left (\frac{\sqrt{55} \sqrt{1 - 2 x}}{11} \right )}}{55} & \text{for}\: 2 x - 1 < - \frac{11}{5} \\- \frac{\sqrt{55} \operatorname{atanh}{\left (\frac{\sqrt{55} \sqrt{1 - 2 x}}{11} \right )}}{55} & \text{for}\: 2 x - 1 > - \frac{11}{5} \end{cases}\right )}{125} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(3/2)*(2+3*x)/(3+5*x),x)

[Out]

-3*(1 - 2*x)**(5/2)/25 + 2*(1 - 2*x)**(3/2)/75 + 22*sqrt(1 - 2*x)/125 + 242*Piecewise((-sqrt(55)*acoth(sqrt(55
)*sqrt(1 - 2*x)/11)/55, 2*x - 1 < -11/5), (-sqrt(55)*atanh(sqrt(55)*sqrt(1 - 2*x)/11)/55, 2*x - 1 > -11/5))/12
5

________________________________________________________________________________________

Giac [A]  time = 1.68473, size = 100, normalized size = 1.45 \begin{align*} -\frac{3}{25} \,{\left (2 \, x - 1\right )}^{2} \sqrt{-2 \, x + 1} + \frac{2}{75} \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} + \frac{11}{625} \, \sqrt{55} \log \left (\frac{{\left | -2 \, \sqrt{55} + 10 \, \sqrt{-2 \, x + 1} \right |}}{2 \,{\left (\sqrt{55} + 5 \, \sqrt{-2 \, x + 1}\right )}}\right ) + \frac{22}{125} \, \sqrt{-2 \, x + 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)*(2+3*x)/(3+5*x),x, algorithm="giac")

[Out]

-3/25*(2*x - 1)^2*sqrt(-2*x + 1) + 2/75*(-2*x + 1)^(3/2) + 11/625*sqrt(55)*log(1/2*abs(-2*sqrt(55) + 10*sqrt(-
2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) + 22/125*sqrt(-2*x + 1)